
C4ISR Architectures II:                                    A 

Structured Analysis Approach for Architecture Design1 

 

Lee W. Wagenhals, Insub Shin, Daesik Kim, Alexander H. Levis 
 
System Architectures Laboratory, C3I Center,  MSN 4D2,  George Mason University 
Fairfax, VA 22030 
 
<lwagenha> <ishin>, <dkim>, <alevis>@gmu.edu 
 
Tel: 703 993 1712; 703 993 1774; 703 993 1724; 703 993 1619 

Fax: 703 993 1708 

 

Abstract 
A Structured Analysis based process for developing C4ISR architectures is presented.  The 

process demonstrates the feasibility of developing architecture descriptions that conform to the 
C4ISR Architecture Framework based on the Structured Analysis paradigm that underlies the 
concepts and definitions in the Framework. Furthermore, the process incorporates the derivation 
of an executable model that can reveal the logical, behavioral and performance characteristics of 
the architecture. The complete process is illustrated through an example involving the insertion 
of a new technology in a large legacy system. 
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1.  INTRODUCTION 

This is the second of three articles on Command, Control, Communications, Computers, 

Intelligence, Surveillance and Reconnaissance (C4ISR) Architectures.  In the first article, [Levis 

and Wagenhals, 00] we described the need for architectures, the role of the architect in producing 

them, and described an approach to architecting information systems that was based on 

Structured Analysis. We also described briefly the C4ISR Architecture Framework, version 2, 

[C4ISR 97] and its products noting that the Framework purposely does not present or mandate a 

process for producing those products.  Finally, we postulated that two alternative, distinct 

approaches may be taken to develop architectures and the Framework products.  One approach is 

based on Structured Analysis concepts and the other is based on Object-Oriented ones. 

[Bienvenu et al., 00]  Both approaches produce products that contain a great deal of information.  

Unfortunately, these products are static representations of a dynamic system and therefore are 

less than ideal for illuminating behavior and performance characteristics.   

We have developed procedures for deriving from the information contained in the static 

architectural products an executable model that can be used to demonstrate the behavior and 

performance characteristics of the architecture.  Furthermore, the executable model can be used 

to verify the architecture design.  Any changes that must be made in the executable model to get 

it to exhibit the desired behavior must then be reflected in changes to the static representations.   

In this article, we present an approach for developing the C4ISR Framework products based 

on the Structured Analysis approach.  We illustrate the approach with a commercial case study in 

which a new technology is introduced for expanding the capability of the “pay at the pump” 

systems available at most gasoline stations.  This is an example of information technology 

insertion in a large legacy system. 

The remainder of this article is divided into six sections.  Section 2 presents a process for 

developing a C4ISR architecture using the Structured Analysis approach and then creating the 

Framework products from that effort.  An activity model is used to present the process.  Section 

3 describes the case study.  In Section 4, we show how to convert the elements of the architecture 

to the discrete event dynamic model, a Colored Petri Net. In Section 5, we use the example of 

Section 3 to show how the executable model can be used to analyze the logical and behavioral 

characteristics of the architecture.  Section 6 describes how the executable model can be 
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extended to allow the architect to extract performance characteristics that can be discussed with 

the user or customer of the systems that will be built in conformance with the architecture.    

 

2.  THE STRUCTURED ANALYSIS APPROACH  
 

The starting point for defining this process is developing an activity model.  Both IDEF02 

and Data Flow Diagrams have been used.  In both models, the context diagram contains a set of 

documents and information as inputs or terminators and the set of Framework products as the 

output or terminators of the process.  The process has been divided into five steps or stages.  

Each stage generates one or more of the Framework products.  This allows for continuous review 

and evaluation of the architecture design.   

The first step in any architectural effort involves the collection of domain information.  This 

is designated as Stage 0 in the proposed process.  In the C4ISR context, 12 types of documents 

and information have been identified as candidates for this effort and they are listed in Table 1.  

Once they are gathered, they form the input to the process and are represented as Terminators in 

the Data Flow Diagram description of the process.   

Table 1  Inputs to the Process Collected in Stage 0 
 

(AV1) Purpose, Viewpoint (Problem Definition) 

D1 Operational Concept Narrative 

D2 Universal Joint Task List (UJTL)  

D3 Current DOD Organization charts/ Joint, Services, Agencies 

D4 Description of Organizational Relationships 

D5 Textual description of Doctrine, Tactics and Operational Procedures 

D6 List of Operational Information Elements  

D7 Definitions of States and Events 

D8 Description of System Functions 

D9 Communication Systems Description 

D10 Performance Attributes of Systems 

D11 Migration Plans for Systems 

D12 Description of Systems 

                                                 
2 IDEF0 stands for Integrated Computer Aided Manufacturing (ICAM) Definition Language 0; it is documented in 
the Federal Information Processing Standard (FIPS) #183. 
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This gathering of domain information is analogous to an architect eliciting requirements and 

desires from a client who wants the architect to design a new home. In the C4ISR context, this 

requirements elicitation process can be a little more formal.  The users (the operators) and the 

customers (the acquisition executives) have a wealth of information about how the DoD does 

business, including formal documents that define doctrine and tactics, formal organizational 

structures, and descriptions and specifications of existing systems that may be incorporated in the 

design of the architecture.   

The list of source documents in Table 1 represents typical classes of information.  As was 

described in Levis and Wagenhals [00], the architecting process must start with a clear purpose 

and viewpoint and an operational concept must be provided.  Sources for these items may 

include mission needs analyses, and operational requirements documents (ORDs) as well as 

discussions with operators of the systems that are similar to the ones that will be defined in the 

architecture.  These documents and elicitations are listed as Purpose and Viewpoint, part of the 

All Views Overview and Summary Information (AV-1) product and D1, Operational Concept 

Narrative, in Table 1.   

DoD has published the Universal Joint Task List (UJTL) that appears as D2.  This list is a 

high level functional decomposition of standard tasks and functions that are performed by DoD 

organizations during military operations.  DoD and its components also have standardized 

organizational structures and relationships.  They are described in standard command 

relationship charts and standing operational plans and operational orders.  These also are 

important references to the architect and are listed as D3 and D4.  As the architect delves more 

deeply into the background domain information he/she can make use of DoD documents that 

describe doctrine and tactics, techniques, and procedures (D5).  In some cases, the architect may 

be able to access studies about systems that reveal typical operational or system information 

elements.  Many previous architectural efforts contain this type of information.  Furthermore, 

documents describing standard message types also may be useful.  These items are listed as D6, 

List of Operational Information Elements.   

As the architect elicits material, users of the systems often describe their vision of the 

architecture in terms of events that the system must react to and various high level states that the 
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system will be in.  Examples include readiness states and the events or conditions that can occur 

that should cause the system to change states.  These descriptions, listed as D7, are important to 

the architectural design and may offer high level descriptions of desired behavior.   

As the architect creates the system architecture views, information about potential systems 

(D12) and their functions (D8) will be useful.  A variety of documents provide technical 

descriptions of current and future systems that can serve this purpose and provide performance 

parameters of those systems (D10).  In addition to the systems, descriptions of existing and 

planned communications networks and links also are available to the architect (D9).  Finally, the 

architect may refer to documents that describe the planned evolution or migration of the system.  

DoD planning guidance and defense plans are good sources for this information (D12).   

The five stages of the process are shown in the Data Flow Diagram of Fig. 1.  The diagram 

also shows the input terminators as described in Table 1 and the output terminators which are the 

C4ISR Architecture Framework Products. A list of products is given in the Appendix; for a 

description, see [C4ISR, 97] or Levis and Wagenhals [00].   

Stage 1 is shown in Fig. 2.  While this is a very simple diagram, it represents a critical step in 

the architecting process because it is the operational concept that guides the remaining stages of 

the process, thus it is passed to the second stage as indicated by the “2” in the oval.  The OV-1 

product, the High Level Operational Concept Graphic, is produced in this stage.   

Stage 2 is shown in Fig. 3.  It has four terminators that provide inputs and one terminator that 

is the output of the stage, the Command Relationship Chart (OV-4).  In this stage, the architect 

uses the Joint Universal Task List and the Operational Concept (as shown by the “2” in the oval) 

to determine the functions that need to be performed to carry out the operational concept and 

organizes them in a functional decomposition.  The architect also uses the operational concept, 

the list of potential organizations, and the organizational relationships to determine which 

organizations to include in the architecture and the command relationships that will exist 

between those organizations.  These command relationship are documented in the Command 

Relationship Chart, OV-4.  These organizations have assets that are the systems that will support 

the activities.  The traditional or logical grouping of the organizations and their assets are used to 

define operational elements and aggregate them into the operational nodes that will be depicted 

in the operational node connectivity diagram.  
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Figure 1  Data Flow Diagram of the Five Stage Process 
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Figure 2.  Process model of Stage 1: Develop the Operational Concept 
 
 
 

 

 
Figure 3.  Process Model of Stage 2.   
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operational elements.  These assets are systems that perform system functions.  The architect 

decides which system functions should perform the operational activities.  This in turn allocates 

the activities in the activity model to those operational elements that own these systems.  The 

activities are also allocated to the functions those systems perform.  This is the key step that 

marries the operational and system architecture views together.  All of the activities in stage 3 

are highly coupled and an iterative process is used during this stage.   

In Stage 4, shown in Fig. 5, the architect creates the remaining Operational Architecture 

View products using the information and models created in Stage 3.  Key parts of the analysis 

needed to create the System Architecture View products are also done.   

The Logical Data Model and the Needlines3 define the Operational Information Elements.  

The allocation process assigned activities to operational elements and nodes. The activity model 

contains the information flows between activities and, by the allocation process, between 

operational nodes.  Thus, the Operational Node Connectivity Description (OV-2) and the 

Operational Information Exchange Matrix (OV-3) can be extracted from the combination of 

activity model and allocation.  The allocation of activities to system functions is documented in 

the Operational Activity to System Function Traceability Matrix (SV-5). Using this allocation 

and the activity model, the architect creates the System Functionality Description (SV-4) which 

is a process model that uses the system functions as the processes or transformations.  SV-4 and 

the Logical Data Model (OV-7) can be used to create the Physical Data Model, SV-11.   

Stage 5 is dedicated to completing the System Architecture View Products.  As shown in Fig. 

6, it requires inputs from both Stages 3 and 4.  The System Information Elements are the 

physical manifestation of the Operational Information Elements that were defined in Stage 4.  

They can be defined from a combination of the Physical Data Model (SV-11) and the System 

Activity Description (Data Flow Diagram of system functions).  The allocation and initial 

physical architecture allows the definition of the system nodes that the system information 

elements flow between.  Once the System Information Elements have been specified, the System 

Information Exchange Matrix (SV-6) can be created.  The characteristics of the System 

Information Elements and Exchanges are used to guide the selection of the Communications 

                                                 
3 Needlines are defined in [C4ISR, 97] as requirements that are the logical expression of the need to transfer 
information among nodes. 
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System including the LANs and WANs that will be included in the architecture.  The architect 

uses the Systems Communications Description (SV-4) that was obtained in Stage 0.  Once the 

LANs and WANs have been identified, the architect can create the System Interface Description 

(SV-1).  

Figure 4.  Process Model of Stage 3 
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Figure 5.   Data Flow Diagram of Stage 4 
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Figure 6.    Process Model of Stage 5 
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System Architecture View.  The architect must maintain consistency (concordance) between 

these products.   

 

3.  AN EXAMPLE OF THE PROCESS 

The illustrative example is based on a relatively new product developed by the Mobil 

Corporation called the Mobil SpeedPass. However, this is not an accurate description of the 

system – it has been created for the express purpose of illustrating the architecture design 

process, especially the case where a new information technology providing a new capability is 

grafted on existing large legacy information systems. Consequently, it will be assumed that some 

oil company (OilCo) has implemented a new system called FastPass. This example has been 

chosen in lieu of a DoD example because of its familiarity to a large audience4.  We start with a 

description of the goal of the system and proceed through the five stages presented in section 2.   

We assume that all of the initial research of Stage 0 has been completed and the input 

documents collected.  Part of this process is the gathering of information about the operational 

concept.  In this example, we assume that OilCo has been informed about a new technology that 

allows information to be encoded in a small device and be retrieved by a small radio signal.  

OilCo believes that such technology can be incorporated in gasoline pumps to make it more 

convenient for drivers to purchase gasoline via a credit card account.  Drivers would need to sign 

up for the FastPass service and provide to OilCo the standard information contained on the credit 

card they normally use to purchase gasoline.  OilCo would store this information in a Central 

database and issue the driver a FastPass device in the form or a rear window mounted tag or a 

key chain.  The device would contain a unique code that OilCo could match to the credit card 

information in the central data base.  The following Operational Concept Graphic (Fig. 7) is 

created by the architect during Stage 1.  As part of the analysis of the operational concept, the 

architect establishes (with the client – OilCo, in this case) the desired behavior of the system.   

 

 

 

 
                                                 
4 The example has been used as a one-day classroom exercise by over 300 students working in teams of four. 
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3.1  Stage 1:  Operational Concept  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Operational Concept Graphic (OV-1) 
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helps establish the boundaries of the system being considered and for which the architecture will 

be described. The boundaries are also shown in the operational concept graphic in Fig. 7.) 

Assumptions: 

Real gas stations have multiple bays, with each bay having two or four double sided pumps. 

All bays but one are usually in the Self-Service mode. The other one is in Full Service mode and 

does not include the FastPass service. For simplicity, we shall consider the operation of a single 

pump equipped with the FastPass system. 

The FastPass service is a new alternative to the traditional payment services: pay cash, pay 

by credit/debit card inside the station, pay by credit/debit card at the pump. As a result, the 

Systems Engineer need not worry about the details of the electronic accounting system used by 

the gas station. He need only consider that these functions have been implemented and are 

available to be part of the FastPass system. 

The process can be described as follows: A Driver pulls up at one of the Self-Serve fuel 

pumps equipped with FastPass system. If his car is equipped with the FastPass tag, then the 

sensor on the pump senses its presence and reads the information on the tag. If the Driver has a 

key-chain tag, he waves the tag in front of the sensor (1 to 2 inches away) and the sensor reads 

the information. The sensor lights up.  

The information read from the FastPass tag or key chain is decoded at the pump and is then 

sent from the pump, through the LAN at the gas station, to the FastPass Central data base where 

the relevant credit card information is retrieved. The request for authorization along with the 

credit card data are then transmitted to the financial institution issuing the credit card. If the 

request is approved, the fuel pump is enabled and the Driver can pump gas. If the request is 

denied, the pump is not enabled and the process terminates with the FastPass light going off. 

(Note that a simpler alternative is for the central data base to maintain a current list of invalid 

credit card numbers, check the request against them, and issue an authorization accordingly)  

If enabled, the Driver selects the grade of gas he desires and pumps gas until he turns off the 

pump by throwing a switch. Then the cost of the sale is computed at the pump and the amount is 

transmitted back to the financial institution where it is entered as a charge in the Driver’s 
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corresponding credit card account. A receipt is issued at the pump. The data about the sale are 

entered in the electronic ledger of the gas station. The pump returns to the idle state.   

Defining required behavior:  From this description, it is possible to infer characteristics of 

behavior desired in the architecture.  We see that the system progresses through several steps or 

states during the operation of the FastPass system by a customer.  In addition, we see that there 

are several stimuli and responses that take place between the Driver and the system.  

Specifically, the system has an idle state when it is not in use.  When a Driver arrives, he/she 

presents the FastPass device, and the system acknowledges the detection of the device.  The 

system then goes through a process of retrieving the credit card data from the Central data base 

and obtaining a credit authorization from the “financial institution”.  It tells the Driver the result 

of the credit check.  There are two possibilities, credit is approved or not approved.  If credit is 

not approved, the Driver may not pump the gas and the pump returns to the idle state.  If 

approval is received, the Driver is instructed to select a grade of gas and to commence pumping.  

The Driver must respond by selecting the grade and operating the pump including indicating 

when he/she is finished by “flipping a switch”.  Finally, the pump computes the total cost of sale, 

provides a receipt to the Driver and sends the results to the financial institution.  The financial 

institution acknowledges the receipt and updating of financial accounts to the gas station.  The 

pump returns to the idle state.   

Note that it is this description of behavior that is of prime interest to the architect’s clients. 

This is often referred to as a key thread.  In addition to producing all of the C4ISR Framework 

products, we will create an executable model that is derived from the architecture that will 

clearly demonstrate the desired behavior.  Indeed, if the executable model does not yield the 

desired behavior as expressed in the key thread, the architect must modify the architecture design 

until it does.   

3.2  Stage 2  Create the Functional Decomposition and the Organizational Structure 

The following functions have been organized in the form of the Universal Joint Task List 

(UJTL). In an actual DoD case, the architect will have to select the appropriate tasks from UJTL 

and construct the hierarchy that is appropriate to the domain and that is consistent with the 

UJTL. In this simple example, the functions that are the basis of the Functional Decomposition 

are: 
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1. Validate Accounts 

1.1 Sense FastPass 
1.2 Retrieve Driver Information 
1.3 Validate Credit 

 
2. Operate Pump 

2.1 Receive Authorization 
2.2 Dispense Gas 
2.3 Compute Cost of Sale   

 
3. Prepare Billing 

3.1 Request Charge 
3.2 Print Receipt  
3.3 Update Accounts 
 

The Functional Decomposition is shown in Fig. 8.  Note that not all of the functions in the 

UJTL have been used.  The architect selects only those functions that are necessary for the 

purpose of the architecture.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.   Functional Decomposition 
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Organizations 

For this example, to keep the dimensionality low, only four organizational entities are 

considered as shown in Table 2.  Each organizational entity has assets that are the basis for 

systems in the systems view: The FastPass central data base is maintained by OilCo that 

manages the FastPass system; the Gas Station has a pump, gas, and the electronic ledger for 

recording sales of gasoline; the Financial Institutions that issue the credit cards used by the 

Drivers through the FastPass system, and the Driver. Note that for simplicity, we will consider a 

single pump.  Considering multiple pumps complicates the logic of the operation substantially; 

we will then have to consider the asynchronous arrival of Drivers, concurrent operations, etc. 

While it is doable, it does not provide additional insight. 

 
Table 2.  Organizations and Assets  

 
Organization Assets 

OilCo FastPass Central  Data Base  
Gas Station Pump, Gas, Ledger 

Financial Institution Financial Account Database 
Driver FastPass Account, Credit Account 

 

 Operational nodes and operational elements are selected from these organizations.  

Operational nodes are graphical objects that will be depicted on the Operational Node 

Connectivity Description.  Each Operational Node will represent one or a collection of 

operational elements 

Table 3.  Operational Nodes and Elements 

Operational Node Operational Elements 
Driver Driver 

Gas Station Pump, Gas Station Office 
OilCo OilCo FastPass Database 

Financial Institution Financial Institution Account Database 
 

The last activity of Stage 2 is to create the Command Relationship Chart, (OV -4).  In this 

case we know that OilCo provides a franchise to the Gas Station and provides the FastPass 

account to the Driver.  Both the Driver and the Gas Station have accounts with the Financial 
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Institution.  The Driver and the Gas Station Interact with each other.  These relationships are 

depicted in the Command Relationship Chart of Fig. 9. 

 

 

 

 

 

 

 

 

Figure 9.  Command Relationship Chart 

 

Stage 3  Create Functional Architecture and Initial Physical Architecture  

Stage 3 begins with creating the three models that comprise the Functional Architecture: the 

Activity Model (IDEF0), the Data Model (IDEF1X), and the Rule Model.  These also are 

Framework products Activity Model (OV-5), Logical Data Model (OV-7), and Operational 

Rules Model (OV-6a), respectively.   

One way to begin the Activity Model is to create an External System Diagram.  The 

perspective of this diagram is standing on the boundary of the system and looking outward at the 

interactions with activities in the environment of the system.  These external systems and 

interactions are gleaned from the operational concept.  The box representing the system is given 

the index number A0 and the boxes representing the external systems represent the functions 

these systems perform and are given index numbers A-01, A-02, …  As with all IDEF0 boxes, 

External System activities are expressed as verb phrases.   

Figure 10 shows the External System Diagram for the FastPass System.  There are two 

external systems that interact with the FastPass System, the Driver and the Financial Institution.  

The overall activity of each in relation to the FastPass system is expressed as a verb phrase.  The 

diagram shows that the Driver presents the FastPass Device to the System.  This is modeled as a 

control since it activates the FastPass system.  The FastPass system interacts with the financial 

institution in two ways.  First, it sends a financial request in the form of an Authorization 

Request to the financial institution to determine that the credit of the Driver is okay.  The 

Driver Gas  
Station 

Interacts 

Financial 
Institution 

OilCo 

Provides FastPass Provides Account 
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financial institution returns the Authorization request with either an approval or denial.  The 

returned authorization request is modeled as a control to the FastPass system because it 

determines whether the Driver can purchase gasoline using the FastPass System or not.  The 

second financial request is in the form of a Request for Charging the Driver’s credit card account 

for the purchase and crediting the gas station account with the amount of the sale.  The Financial 

Institution returns a Bank Transaction to the FastPass system with the results of this charging 

activity.  After the Driver has purchased the gasoline, the FastPass system provides a Receipt to 

the Driver.  The System also provides instructions to the Driver via the display.  These are 

modeled as controls to the Driver activity because the display provides direction to the Driver 

activity.   

 

Figure 10.  External System Diagram 

 

The External System Diagram is consistent with the operational concept and defines the 

interfaces between the system and its environment.  By itself, it can be used to discuss the 

operation of the system with the customer to ensure all agree on the system boundary and 

interactions.  Once created, the traditional context diagram of the IDEF0 Activity model is easily 
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obtained by deleting the External Systems from the diagram.  The resultant context diagram is 

shown in Fig. 11.  The other pages of the IDEF0 model are shown in Figs. 12 through 15.    

The Data Model is shown in Fig. 16.  In general, each Input, Control and Output represents 

an entity in the Data Model, although it is permissible to have any one of them represent an 

attribute of an entity.  The selection of the attributes and the relationships that determines the 

migration of the Keys must be consistent with the activities in the IDEF0 model.   

 

Figure 11.  Context Diagram for the Activity Model 

 

 

 

 

Figure 12.  First Level of Decomposition 
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Figure 13.  Validate Accounts Page 
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Figure 14.   Operate Pump Page 

 

 

Figure 15   Prepare Billing Page 
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Figure 16   Logical Data Model (OV-7) 

For brevity, only the Rule Model associated with the Activity “Operate the Pump” is shown.  

Note that the Rules represent the activation rules for the leaf functions of the IDEF0 model and 

that the clauses of the rules match the entities and their attributes of the data model as well as the 

inputs, controls, and outputs of the function for which they apply.   

Rule for Activity A22: Dispense Gas 
 
R22: If Authorization_Transaction.approval = true  
           And (Selection. “on”, Selection.QuantityControl, Selection.Grade are Selected) 
              Then  
                     (Dispensed_Gas_Data.Grade = Selection.Grade; 
                      Dispensed_Gas_Data.QuantityControl = Section.QuantityControl ) 
              And Display.Content = “When done, turn off the pump”; 

 
 

The architect creates a State Transition Diagram for the FastPass System as shown in Fig. 17.  

Note that this State Transition Diagram is consistent with both the models and the behavioral 

description elicited during the domain information gathering stage.  The states and the transitions 

between them can be obtained by tracing a key thread through the IDEF0 model starting with the 

arrival of a Driver at the pump.   

The architect next turns to the process of allocating the activities of the functional 

architecture to the operational elements and nodes that were selected in Stage 2 and selecting 

each operational element to perform the activities.  Table 4 shows the allocation of activities to 

the operational elements.  Notice that the nine leaf activities of the Activity model have been 

assigned to four operational elements.  “Update Account” and “Validate Credit” are each 

assigned to two operational elements.  Recall that the financial institution is outside the boundary 

of the system, but interacts with it.  Thus, the pump is responsible for the “Validate Credit” 

activity although it is accomplished by the financial institution.  Similarly, the “Request Charge” 

will cause the financial institution to “Update Accounts” and will return the result to the Gas 

Station Office where the ledger will be updated.   
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Figure 17.  State Transition Diagram (OV-6b) 
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Table 4.  Allocation of Operational Activities to Operational Elements 

Operational Element Activities 
Financial Institution 
 

(Update Account) 
(Validate Credit) 

Gas Station Office Update Accounts 
OilCo Retrieve Driver Information 
Pump 
 

Sense FastPass 
Request Charge 
Receive Authorization 
Dispense Gas 
Print Receipt 
Compute Cost of Sale 
Validate Credit 

 

The architect also will allocate the Operational Activities to the systems.  This is done by 

matching the Operational Activities to the System Functions the systems can perform.  Table 5 

shows the type of information available to the architect (gathered in Stage 0) to support this 

allocation process.  The result of this allocation process is shown in Table 6.   

 

Table 5.  System Elements, System, and System Functions 

System 
Element 

Functions 

Driver FastPass Tag Provide FastPass Tag 
Select Option 

FastPass Sensor Sense FastPass Tag and Decode 
FastPass ID 

Pump Control Unit Control Operation  
Sense Selection 
Request Authorization 
Request Charge 

Message Display (at Pump) Display Message 
Receipt Printer Print Receipt 
Calculator Compute Cost of Sale 
Gas Nozzle Valve Dispense Gas 

Pump 

Communication Unit Receive/ Transmit Signal 
Sales Database Record Transaction Gas Station Office 

Database 
Communication Unit Receive/ Transmit Signal 
FastPass Central Database Retrieve Driver Information FastPass Central 

Database (OilCo) Communication Unit Receive/ Transmit Signal 
Account Database Issue Authorization 

Manage Database 
Financial Institution’ 
Database 

Communication Unit Receive/ Transmit Signal 
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Table 6.  Allocation of Operational Activities to System Functions 

Activities System Functions 
Sense FastPass Provide FastPass Tag 

Sense FastPass Tag and Decode FastPass ID 
Retrieve Driver Information  Sense FastPass Tag and Decode FastPass ID 

Retrieve Driver Information 
Validate Credit Request Authorization 

Display Message 
Issue Authorization 

Receive Authorization Control Operation 
Dispense Gas Sense Selection 

Display Message 
Dispense Gas 

Compute Cost of Sale Display Message 
Compute Cost of Sale 

Request Charge Request Charge 
Print Receipt Print Receipt 
Update Account Record Transaction 

Manage Database 
 

The last processes of Stage 3 involve creating two forms of the initial physical architecture.  

In the first form, the architect uses the operational nodes to construct the skeleton of the 

Operational Node Connectivity Description.  Needlines are connected between the operational 

nodes indicating that operational information elements are passed between the operational nodes.  

Figure 18 shows the skeleton of the Operational Node Connectivity Description.   

Finally the architect creates the initial physical architecture composed of one or more 

diagrams showing system nodes with systems, system elements and system components and the 

communications links that connect them.  The architect uses the Operational Node Connectivity 

Description as a guide.  These Operation Nodes with Assets are represented as system nodes in 

the initial physical architecture.  Figure 19 shows the initial physical architecture for the FastPass 

system.   
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Figure 18.  Operational Nodes and Needlines 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.   Initial Physical Architecture 

 

3.4  Stage 4  Complete Operational Architecture Views and Create System Activity Models 

During Stage 4, the architect completes the Operational Architecture View Products and 

produces the physical manifestation of the Functional Architecture into the Systems 

Functionality Description and a Physical Data Model.  The first step in this stage is to define the 

Operational Information Elements that will be represented in the Operational Node Connectivity 

Description (OV-2) and the Operational Element Exchange Matrix (OV-3).  The main source for 

the operational elements is the Logical Data Model (OV-7).  Each entity is a candidate for an 

Operational Information Element. These are logical information entities that flow over needlines 

between operational elements and nodes.  The operational nodes and elements have been defined 

in Stage 3 and the operational activities have been assigned to them.  It is straightforward to 

determine the entities that flow between the operational element.  Table 7 lists the Operational 

Information Elements and the Operational Elements that produce them.  Note that in some cases 

the Operational Element consists of an attribute of an entity in the Logical Data Model.  For 

example Grade of Gas is an attribute of the entity Selection.  The Banking Transaction has been 
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added.  It represents the information that is sent from the financial institution to the Gas Station 

Office as part of the activity “Update Accounts.”   

Table 7. Operational Elements 

Operational Information Element Producing 
Operational Element 

Authorization_Transaction.Approval Financial Institution 
Bank_Transaction.complete Financial Institution 
Dispensed Gas Data Pump 
Display Pump 
Authorization_Transaction.request Pump 
Driver Information OilCo 
Grade of Gas (Selection) Driver 
FastPass Device Driver 
Quantity Control (Selection) Driver 
Receipt Pump 
Bank_Transaction.request Pump 
FastPass ID Pump 

 

It is now possible to complete the Operational Node Connectivity Description (OV-2) as 

shown in Fig. 20.  This figure shows the operational nodes and the needlines.  Note that each 

operational node contains a window that shows the operational activities that are performed at 

the node.  In addition, there is a window for each needline that shows the operational information 

elements that are flowing between the operational nodes.  One can view this product as a 

morphed version of the IDEF0 model in which all of the leaf activities have been clustered into 

their assigned operational nodes and the flows between the activities have been bundled into 

needlines.   

The information contained in the functional architecture models is also reflected in the 

Operational Information Exchange Matrix (OV-3).  Each row of the matrix specifies several 

characteristics of one of the operational information elements.  These characteristics include the 

name and several parameters about its content, plus list the Operational Element and the 

operational activity that produces it and the operational element and activity that receives it.  The 

Operational Information Exchange Matrix is shown in Table 8. 
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Figure 20.  Operational Node Connectivity Description (OV-2) 

Table 8.  Operational Information Exchange Matrix (OV-3) 
Information Description Information Source Information Destination 
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Media Size Unit 

Operationa
l element Activity  

Operational 
element Activity 
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Micro
wave 

8 Number Driver N/A 
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Receipt Docu
ment 

2x4
” 

Paper 
string 

Pump Print Receipt Driver N/A 

Having completed all of the Operational Architecture view Products, the architect turns to 

completing the System Architecture view.  At this point is easy to produce the System Function 

Traceability Matrix (SV-3) using the allocation information created in Stage 3.  This matrix is 

presented in Table 9.  Note the many-to-many relationship that can exist between Operational 

Activities and System Functions.  For example, the Operational Activity “Retrieve Driver 

Information” will be accomplished by two system functions and the System Function “Display 

Message” will support four Operational Activities.  Also note that an indexing scheme has been 

applied to the System Functions so that each one is associated with the system that performs the 

function.  This grouping will aid in the development of the System Functionality Description. 

Table 9.  System Function Traceability Matrix (SV-3) 
  Operational Activities     

           

System System Functions 
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 Print Receipt 
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Database 
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The next step is to complete the System Functionality Description (SV-4) which is an 

Activity Model based on Data Flow Diagrams.  This model will have the System Functions as its 

transformations.  The architect uses the IDEF0 model and the System Function Traceability 

Matrix to create the Data Flow Diagram.   

The Context Diagram is shown in Fig. 21.  Notice that it preserves the original system 

boundary with the Driver and the financial institution outside the system but interacting with it as 

Terminators.   

 

 

Figure 21.  Context Diagram 

 

The first level of decomposition is shown in Fig. 22.  The decomposition principle was based 

on grouping system functions associated with the major systems of the architecture.  Thus there 

is a transformation for the Pump system, a single transformation for the OilCo Central system, 

and a single transformation for the Gas Station Office System.  Data Stores are shown connected 

to the latter two transformations that represent the OilCo Central Data Base and the Gas Station 

Office Ledger, respectively.   

The decomposition of the pump system functions is shown in Fig. 23.  It is composed of the 

eight system functions listed in the System Function Traceability Matrix for the Pump.  The 

architect must maintain a consistent mapping between the IDFE0 activity model of the 

Operational Architecture view and the System Functionality Description since they are both 

activity models of the same architecture, one from an operational point of view and the other 

from a systems point of view.  This means that for each System Function that has a one-to-one 
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mapping to an Operational Activity, inputs and controls of the IDEF0 activity should map to the 

inputs of the transformation in the system model and outputs of the IDEF0 activity should map to 

the outputs of the transformation.  If there is a one-to-many mapping from the operational 

activity to the system functions, then the inputs and outputs to the aggregate of the system 

functions should map to the input, controls, and outputs of the operational activity.  The system 

functions (transformations) Sense Selection and Display, are examples of this one-to-many 

mapping.  On the other hand, if the mapping from the operation activities to the system function 

is many-to-one, as is in the case of the system function Display, then the aggregate of the inputs, 

controls, and outputs in the operational activity should map to the inputs and outputs of the 

single system activity.  The choice of a single termination for Display reflects the architect’s 

decision to have a single display system element, such as an LCD, that tells the customer that the 

FastPass Device has been decoded, the FastPass account data has been retrieved (or is not 

available), the credit has been (or not) validated, and the cost of the sale.   

 

 

Figure 22.  First Level of Decomposition 

 

The architect also creates the Physical Data Model (SV-11).  It describes the physical 

manifestation of the entities in the Logical Data Model as it describes the actual messages that 

are flowing in the Data Flow Diagram and the data that are in the Data Stores.  A tabular format 

FastPass_Device
Selection

Display

Receipt

Driver Information

Dispensed _Gas_Data

Authorization_Transaction
Bank_Transaction
Authorization_Transaction

Bank_Transaction

Financial 
Institution

Driver

FastPass_ID 

                  FastPass Central Database

Driver Information

  1 
Perform 
Pump 

System 
Functions

  3 
Record 

Transaction

  2 
Retreive 

Driver 
Information 

                 Sales Database

Bank_Transaction

         Gas_Pricing



 
               

- 33 -

is used to list each message or record and the fields of each.  Table 10 shows the Physical Data 

Model for the FastPass system. 

 

Figure 23.   Decomposition of the “Perform Pump System Functions” Transformation.   
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Table 10.  Physical Data Model  

Messages: 

Records   Fields Format 
Selection - Quantity Control 

- Grade of Gas 
Numeric(10) 
Numeric(1) 

FastPass Device Data - FastPass ID (Encrypted) Numeric(8) 
Dispensed Gas - Driver Credit Account Number 

- Transaction_Number 
- Quantity Control 
- Grade of Gas 

Numeric(8) 
Numeric(10) 
Numeric(10) 
Numeric(1) 

Bank_Transaction  - Gas Station Office Account 
- Status 
- Cost of Sale 
- Transaction_Number 

Numeric(16) 
Boolean 
Numeric(10) 
Numeric(10) 

Authorization_Transaction - Transaction_Number 
- Driver Credit Account 
- Approval Content 

Numeric(10) 
Numeric(10) 
Boolean 

Dispensed Gas_Data - Driver Credit Account Number 
- Transaction_Number 
- Cost of Sale 
- Quantity Control 
- Grade of Gas 

Numeric(8) 
Numeric(10) 
Numeric(10) 
Numeric(10) 
Numeric(1) 

Bank_Transaction.Request  - Driver Credit Account 
- Gas Station Office Account 
- Cost of Sale 
- Transaction_Number 

Numeric(16) 
Numeric(16) 
Numeric(10) 
Numeric(10) 

Receipt - Gas Station Name 
- Gas Station Address 
- Date 
- Driver Credit Account 
- Name 
- Grade of Gas 
- Quantity Control 
- Cost of Sale 

Char(40) 
Char(40) 
Numeric(6) 
Numeric(16) 
Char(40) 
Numeric(1) 
Numeric(10) 
Numeric(10) 

Data Stores: 

Records   Fields Format 
Driver Information 
(FastPass Central Data 
Base) 

- FastPass ID 
- Name 
- Driver Credit Account Number 

Numeric(8) 
Char(40) 
Numeric(16) 

Sales Data Base - Gas Station Office Account 
- Sales History 

Numeric(16) 
Numeric(10) 

Gas Station Office 
(Gas_Pricing) 

- Gas Station Office ID 
- Gas Station Name 
- Gas Station Address 
- Gas Unit Price 

Numeric(16) 
Char(40) 
Char(40) 
Numeric(10)  

Display: 
Records   Fields Format 
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Display - Display ID 
- Message 

Numeric(2) 
Char(40) 

 

 

3.5  Stage 5:  Complete System Architecture Views 

In Stage 5, the architect completes the System Architecture view products, drawing on the 

knowledge and information created in the earlier stages and adding new refinements such as 

details of the communications architecture, descriptions of interfaces, and future migrations, 

capabilities, and technologies.  Again, the architect must ensure that consistency is maintained 

across all products.   

The architect begins by defining the System Information Elements.  These are consistent with 

both the Logical Data Model and the Physical Data Model.  The architect specifies attributes for 

each System Information Element as shown in Table 11. 

Table 11.  System Information Elements 

System Name Content Media  Data/Media 
Format 

Security Frequency 

Selection Data ASCII Plain Dynamic Driver  
FastPass Tag Microwave Radio Signal Secure Dynamic 
FastPass ID Data ASCII Secure Dynamic 
Dispensed Gas_Data Data ASCII Plain Dynamic 
Cost of Sale Data ASCII Plain Dynamic 
Request for Charge Data ASCII Secure Dynamic 
Driver Credit Account Data ASCII Secure Dynamic 
Receipt  Document Text Plain Dynamic 

Pump 

Message Display Text Plain Dynamic 
Gas Station Office 
Database 

Bank_Transaction Data ASCII Plain Dynamic 

FastPass Central 
Database 

Driver Information Data ASCII Secure Dynamic 

Authorization_ 
Transaction 

Data ASCII Secure Dynamic Financial 
Institution 
Database Bank_Transaction Data ASCII Secure Dynamic 

 

The architect uses the information about the System Information Elements to select the types 

of LANs and WANs for the architecture.  These are added to the Initial Physical Architecture as 

shown in Fig. 24. 

The architect has sufficient information to create the System Interface Description (SV–1).  

An Intra-System view (Node-Edge to Node-Edge) is shown in Fig. 25.   
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If necessary, the architect can expand the communication system architecture of the System 

Interface Description and produce the Systems Communications Desciption (SV-2).  An example 

is shown in Fig. 26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.   LAN/WAN Selections 
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Figure 25.  System Interface Description
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Figure 26.  System Communications Description 

 

The Communications System helps specify the interfaces between the System Nodes, 

Systems, System Elements and System Components.  The System
2
 Matrix (SV-3) is a compact 

product that tabulates this aspect of the architecture as shown in Fig. 27.  The architect 

determines the types of interfaces and creates a key that is used to fill out the matrix.   

The System Information Exchange Matrix (SV-6) provides in tabular form much of the 

information provided in the System Functionality Description and the Physical Data Model.  

Like the Operational Information Exchange Matrix, it associates the System Information 

Elements with the System Functions of the system activity model, the Data Flow Diagram.  It 

also provides important attributes of each System Information Element.  The format of the 
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columns of the matrix is Input, System Function, Output.  An example of the System Information 

Exchange Matrix is shown in Table 12.  This product must be consistent with all other products.  

For example, the requirements for security must match the interface description of the System
2
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Figure 27.  System
2
 Matrix 

 

If required, the architect may also create the System Performance Parameter Matrix (SV–7) , 

the System Evolution Description (SV-8), and the System Technology Forecast (SV–9) as shown 

in Tables 13 and 14 and Fig. 28.   
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Table 12. System Information Exchange Matrix 
Input System 

Function 
Output 

System 
Name 

Content Media  Data/ 
Media 
For-
mat 

Sec 
urity 

Freq-
uency 

 System 
Name 

Content Media  Data/Me
dia 
Format 

Sec-
urity 

Freq
-
uen
cy 

Driver FastPass 
Tag 

Microw
ave  

ASCII Secure Dyna 
mic 

Sense 
Fast-Pass 
Tag 

Pump Fast-Pass 
ID 

Data  ASCII Sec-
ure 

Dyn
amic 

Activate/ 
Deactivate 
Signal  

Data  Binary Plain Dyna 
mic 

Pump 
 

Dispensed 
Gas Data 

Data ASCII Plain Dyna 
mic 

 
Display 
Message 
 

Pump Message Dis-
play  

Text plain Dyn
amic 

Pump Cost of Sale Data ASCII Plain Dyna 
mic 

FastPass 
Central 
Database 

Driver 
Information 

Data ASCII Secure Dyna 
mic 

Print  
Receipt 
 

Driver Receipt Docu-
ment 
 

Text plain Dyn
amic 

Driver Selection Data ASCII plain Dyna 
mic 

Financial 
Institution 
Database 

Authoriza-
tion. 
Approval 

Data ASCII Secure Dyna 
mic 

Pump Activate/ 
Deactivate 
Signal  

Data Binary Plain Dyn
amic 

Activate/ 
Deactivate 
Signal 

Data Binary Plain Dyna 
mic 

Pump Dispensed 
Gas Data 

Data ASCII plain Dyn
amic 

Pump 
 

Selection Data ASCII plain Dyna 
mic 

Dispense 
Gas 

 

Gas 
Station 
Office 
Data 
base 

Dispensed 
Gas Data 

Data ASCII plain Dyn
amic 

Pump Dispensed 
Gas Data 

Data ASCII plain Dyna 
mic 

Compute 
Cost of 
Sale 
 

Pump Cost of 
Sale 

Data ASCII Plain Dyn
amic 

Pump Dispensed 
Gas Data 

Data ASCII plain Dyna 
mic 

Financial 
Institution 

Bank_ 
Transaction 

Data ASCII Secure Dyna 
mic 

Record 
Trans-
action 
 

Gas 
Station 
Office 
Data 
base 

Trans-
action 

Data ASCII plain Dyn
amic 

Pump Driver 
Information 

Data ASCII Secure Dyna 
mic 

Request 
Author-
ization 
 

Fin 
ancial 
Institut
ion 
Data 
base 

Authorizati
on. 
approval 

Data ASCII Secure Dyn
amic 

Cost of Sale Data ASCII Plain Dyna 
mic 

Pump 

Driver 
Information 

Data ASCII Secure Dyna 
mic 

Request 
Charge 

Fin 
ancial 
Institut
ion 
Data-
base 

Request 
for Charge 

Data ASCII Secure Dyn
amic 

FastPass 
Central 
Database 

FastPass ID Data ASCII Secure Dyna 
mic Retrieve 

Driver 
Inform-
ation 
 

Pump Driver 
Inform-
ation 

Data ASCII Secure Dyn
amic 
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Table 13.  System Performance Parameter Matrix 

System Name Performance 
Parameters 

Base Line Objective 

Pump FastPass detection 
accuracy 

 
N/A 

 
99.9% 

FastPass 
Central 

Database 

Driver Information 
verification time 

N/A Limit less than 3 
seconds 

Financial 
Institution 
Database 

Credit Validation Time      3 seconds   N/A 

 

 

 

 

Figure 28.  System Evolution Description 

 

 

 

 

 

 

 

 

Table 14.  System Technology Forecast 
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System 
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Limited FastPass 
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Technology Area 
& Capabilities 

0-6 Months 6-12 Months 12-18 Months 18+ Months 

Security Public key 
algorithm 

 

Distributed 
Heterogeneous 
Database 

Middleware and/or 
proprietary interface 
 

Dynamic 
active DBMS 

 

Satellite 
Communication 

World wide DAMA (Demand Access 
Multiple Access) ground terminal migrate 
into WAN 
 

 

OilCo Subscriber 
Roaming 

System wide roaming across the boundary 
of home service area  

International roaming across 
the boundary of domestic 
service area 
Heterogeneous DBMS 

 

4. SYNTHESIS OF THE EXECUTABLE MODEL 

It is possible to create an executable model of the architecture using the information and 

models produced during Stage 3 of the process.  In the first article of this series, [Levis and 

Wagenhals, 00] we described the creation of the executable model as the synthesis phase, in 

which the information developed in the analysis phase is synthesized into an executable model.  

In this section, we describe how to synthesize such a model and illustrate how it can be used to 

verify that the behavior of the architecture matches the desired one.  The discrete event system 

modeling paradigm is used, and we use Colored Petri Nets for creating the executable model of 

the architecture.  The choice of modeling paradigm is dictated by the nature of the processes 

being modeled – in this case, decision processes and asynchronous events. 

4.1 Colored Petri Nets  

Information Systems are dynamic in nature.  Events occur that trigger the execution of 

functions and many functions can be executed concurrently.  An executable representation of the 

system illustrates the dynamic behavior and permits the evaluation of time-related measures of 

performance. It also enables the formal analysis of the model to determine its logical and 

behavioral characteristics. There exist several graphical modeling approaches that allow a 

dynamic representation of discrete event systems.  Colored Petri Nets [Jensen, 92], Finite State 

Machines, and Behavior Diagrams, Queuing nets are examples of such approaches.   

The basic conversion of an Activity model into a Petri Net was described in Levis and 

Wagenhals [00]. Petri Nets consist of places, transitions, directed arcs and tokens. In Colored 

Petri Nets, the tokens are distinguishable; they are characterized by their color: an attribute 
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vector is associated with each token. The assignment of values to the attributes from their 

respective domains specifies the color of the token. Color sets are associated with places; they 

specify which token can reside in that place. Complex enablement conditions can be specified on 

the arcs between input places and transitions. Each input arc inscription specifies the number and 

type of tokens that need to be in the place for the transition to be enabled. The output arc 

inscriptions indicate what tokens will be generated in an output place when a transition fires. 

Furthermore, guard functions associated with transitions are allowed. These guard functions 

specify additional conditions that must be satisfied, i.e., in addition to those inscribed on the arcs, 

for a transition to be enabled. Code segments can be associated with transitions. These code 

segments can represent the function modeled by the transition and complement the output arc 

inscriptions. 

Each Colored Petri Net model has a Global Declaration node associated with it that contains 

the definitions of all Color Sets and their associated domains and the definition of variables. It 

becomes apparent then that much of the data in the data dictionary of an architecture appears in 

the global declaration node of the Colored Petri Net model. 

The use of Colored Petri Nets to develop an executable model from the Structured Analysis 

models can be described as follows.  

4.2 Implementation sources  

The executable model is derived from four static models of the architecture: the activity 

model (IDEF0), the data model (IDEF1X), the rule model, and the state transition diagram.  

These four models are tightly coupled and it is assumed that they are consistent with one another 

based on a formal concordance process.  Elements from each are transferred to the Colored Petri 

Net model.  It is important that no additional information be incorporated in the CP net model 

that is not traceable to one or more of these four models.  If it becomes necessary to make such 

additions or to make changes to the CP net model to make it execute properly, these changes 

must be also made in the static models and the C4ISR Architecture Framework products that are 

derived from them.   
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4.2.1 Implementation sources from IDEF0 

One starts with the activity model. The CP net has the same hierarchical structure as the 

activity model.  It has the same functional decomposition.  The hierarchy page of the 

Design/CPN model is shown in Fig. 29.  Note its similarity to the functional decomposition 

shown in Fig. 8.   

 

Figure 29  Hierarchy Page of FastPass Architecture CP net Model 
 

The first page of the hierarchy is called the environment page and is similar to the External 

System Diagram of Fig. 10.  The CP net model of the environmental page is shown in Fig. 30.  
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Figure 30.  External System Diagram Representation in Design/CPN  
 

Each IDEF0 activity is converted into a transition; each IDEF0 arrow connecting two activity 

boxes is replaced by an arc-place-arc combination, and the label of the IDEF0 arc becomes the 

color set associated with the place.  To illustrate this conversion, the IDEF0 model for the first 

level of decomposition is shown in Fig.31 and the corresponding CP net model page is shown in 

Fig. 32 

 

Figure 31.  FastPass System IDEF0 Model 
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Figure 32 FastPass Color Petri net Model 

Substitution Transitions are transitions that represent a subnet appearing in a child page in a 

Hierarchical CP net. They are used for each IDEF0 activity that is decomposed.  The CP net 

page for the “Validate Accounts” activity is shown in Fig. 33.  

 
Figure 33. Color PetriNet FastPass System (Validate Accounts)  
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In order to execute the CP net model, it is necessary to provide the stimuli sources and 

receptor sinks for the external systems that interact with the system.  The architect has several 

choices.  As a first choice, the architect can play the role of each external system by manually 

providing and removing tokens that represent the inputs and response of the external systems as 

the simulation is run.  For example, the architect would place a token in the input place that 

represents the Fast Pass Device and start the simulation.  The simulation would proceed to the 

point where the Authorization Transaction token was generated in the output place.  The 

architect would remove this token and add the response of the Financial Institution in the 

Authorization Transaction input place and continue the simulation.  It would run until it required 

a Selection input from the Driver.  The architect would continue testing the execution of the 

model in this start and stop manner until the Driver received the receipt and the accounts were 

updated.  An alternative is for the architect to create additional CP net pages that model the 

actions of the external systems as they interact with the architecture model.  These pages are 

connected to the appropriate input and output places of the architecture model.  We have chosen 

this option in the example.   

The CP net model page of the Driver is shown in Fig. 34.  The arrival of a Driver will be 

simulated by placing a token in the “Driver In” place.  This token contains as attributes the 

FastPass device number plus the grade of gas and the number of gallons the Driver will pump.  

The transition named Present FastPass represents the Driver presenting the FastPass device to the 

pump.  The Driver receives the various messages from the pump in the “Display” place.  Some 

of the display messages are simply informative, i.e. “Welcome to FastPass,” and others provide 

prompts to the Driver.  We model the Driver’s response to the prompts.  Thus, there is a 

transition that models the Driver’s response to the prompt to make a selection and a transition 

that represents the Driver stopping the pump when he is done.  Finally, we model the Driver 

receiving the receipt.   

The model of the Financial Institution is quite simple as shown in Fig. 35.  It contains two 

transitions.  One represents the authorization process and the other the updating of the accounts 

process.   

Care must be taken in constructing the models of the external systems.  Our goal is not to 

model all of their actions but only the interactions they have with the architecture model.  
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Making the external system models as simple as possible avoids having unnecessary complexity 

in the overall CP net model that can increase the analysis and evaluation effort unnecessarily . 

 

4.2.2 Implementation sources from IDEF1X 

In the set of static architecture models, the IDEF1X data model describes the details of the 

input, controls, and outputs, of the IDEF0 activity model.  The data model shows the 

composition of the data entities in terms of each entity’s attributes and the relationships between 

them.  The places in the CP net model will contain tokens that represent these entities.  The type 

of tokens that each place can hold must be declared in the Global Declaration Node.  Thus the 

IDEF1X entities are used to derive the names of color sets in the Global Declaration Node as 

shown in Fig. 36.   

 

 

 

Figure 34  CP net Model of the Driver External System 
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Figure 35  CP net Model of the Financial Institution External System 
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Figure 36.  Global Declaration Node 

We begin the construction of the color sets in the global declaration node by declaring atomic 

color sets Int (for integer), Boolean, and String.  These will form the basis for the attributes that 

make up the color sets that will be used to specify the type of token each place can hold.  Color 

sets that will be assigned to places are formed by using tuples created using the “product” 

constructor.  Each color set that is assigned to a place has the same number and type of attributes 

as shown in the data model.  In addition to the color set declaration, variables are associated with 
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the color sets so they can be used in the arc inscriptions that implement the rules of the rule 

model.   

4.2.3 Implementation sources from the Rule Model 

The information contained in the data model is used to specify the color sets and their 

respective domains, while the rules in the rule model result in arc inscriptions, guard functions, 

and code segments. In this example, all rules are expressed as arc inscriptions and guard 

functions.  

4.2.4 Implementation sources from the State Transition Diagram  

The State Transition Diagram was created by following a key thread through the IDEF0 

model.  It reflects the initial conditions for the CP net model, the states the model should 

progress through from the initial state, and indicates dialog between the system and the entities in 

the environment.  It represents the behavior that the architect has created in the model and should 

be consistent with the behavior desired by the client.  It will be used to verify that the model 

executes property.   

4.3 Integration  

The process of deriving the executable model invariably leads to some revision of the static 

models.  Indeed, in creating the FastPass example, several minor changes had to be made in the 

models after undesired and unnecessary behavior was found in the executable model.  It is most 

important that discipline be exercised so that any change introduced at the executable model 

level is reflected back in the static models. In this way, a documented and easily reviewed 

representation of the architecture can be maintained (traceability.) 

The executable model becomes the integrator of all the information; its ability to execute 

tests the logic of the model. The model can be executed to check its logical consistency, that is, 

to check whether the functions are executed in the appropriate sequence and that the data needed 

by each function are appropriately provided.  

Since Colored Petri Nets with their dense annotation are not easily understandable by the 

information system users, all the information gathered in the design and exploitation of the 

executable model needs to be brought back into the static models. This annotated and validated 

representation now constitutes a sound basis for system development. 
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5.  LOGICAL AND BEHAVIORAL EVALUATION OF THE ARCHITECTURE 

 

Once the executable model of the architecture has been created and debugged, it can be used 

to evaluate the architecture.  Of course the model can be run in the simulation mode to verify its 

logical and behavioral properties.  But in addition to simulations, if Design/CPN5 has been used, 

it is possible to quickly evaluate the behavior of the architecture using the built-in state space 

analysis tools.  These tools have two main components, the occurrence graph analyzer and the 

state space report.   

Design/CPN can generate the full occurrence graph for the FastPass architecture.  It is shown 

in Fig. 37.  It is a directed graph with nodes and arcs.  Each node is numbered and also shows the 

number of predecessor and the number of successor nodes (e.g. 1:2 means the node has one 

predecessor and two successors).  Each node represents a state of the CP net defined by the set of 

markings (tokens) of each place in the CP net.  When Design/CPN creates the occurrence graph, 

it generates two types of information.  First, it displays a lists all of the tokens in all of the places 

in the model for each node in the occurrence graph.  With each arc, it displays the name of the 

transition that fired causing the change of state and the bindings that enabled the transition in that 

firing.  These displays can be shown or suppressed as desired by the user.   

If the state space of the CP net is finite and small enough to be generated by the computer 

resources available, Design/CPN can generate all of the states that can be reached from an initial 

state by any allowable firing sequence.  If the occurrence graph has one or more final states, then 

any path from the initial state to a final state represents a potential simulation run of the CP net.  

Thus the occurrence graph exhaustively shows all of the ways the model can execute from a 

given initial condition, i.e., it subsumes all the possible state transition diagrams that start from 

the same initial state.  Thus it can show all behavior for a given initial state.  This description of 

behavior can be compared with the desired behaviors elicited from the clients during the domain 

information gathering stage.  Furthermore, new and potentially acceptable behaviors can be 

discovered and conveyed to the client.   

                                                 
5 Design/CPN is a software package developed and distributed by the University of Aarhus, Denmark. It has an 
Editor, a Simulator, and a set of analysis tools. See Kristensen et al., [98]. 
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Figure 37  Occurrence Graph of FastPass Architecture 

A review of the occurrence graph of the FastPass architecture shows that it is consistent with 

the desired behavior.  To aid in reading the graph, the detailed displays have been suppressed, 

and the transitions from state to state have been labeled with appropriate descriptors based on the 

firing information provided by Design/CPN.  From the single initial state, the arrival of the 
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Driver, the execution sequences to state 13.  The transitions correspond to those described in the 

State Transition Diagram of Fig. 17 which represents the clients desired behavior.  In state 13, 

the Driver has finished pumping the gas and the pump has computed the final cost of sale.  At 

this point, two process threads occur concurrently.  The first thread is the printing of the receipt 

followed by the Driver taking the receipt.  The second thread is the pump sending the business 

transaction (charge request) to the Financial Institution, the latter updating its accounts and 

returning the business transaction, and the gas station updating its local account.   

The fact that there are concurrent threads is reflected in the occurrence graph by the set of 

branches and joins starting from State 13.  From this state there are 9 paths through 11 states.  

Each path represents a feasible sequence of state changes that can occur as a result of the two 

concurrent threads.  The nine paths represent all of the ways these two concurrent and 

independent threads can be interleaved.  An important observation is that each path terminates in 

the same final state.  This means that the two threads are independent, that is one cannot effect 

the other.  We know that the same receipt is printed and the accounts are updated in the same 

way regardless of the sequence of firings 

Every path through the occurrence graph is consistent with desired behavior.  Because the 

occurrence graph contains every possible sequence of state changes from the initial state to the 

final state, it shows that the architecture design is sound and complete, and the state space 

analysis shows that the CP net is operating properly.   

In addition to the occurrence graph, Design/CPN is capable of generating a state space report 

without executing the net.  This report can be generated very quickly, even for large state spaces. 

It provides a great deal of useful information about the properties of the CP net that characterize 

the behavior of the net for a given marking.  The report is divided into four sections:  Statistical 

Information, Boundedness Properties, Home and Liveness Properties, and Fairness Properties.  

These reports can quickly show that the CP net model will behave in the desired manner.  Useful 

information includes the number of final states, any transitions that will not fire from an initial 

marking and the maximum number of tokens and their values that can appear in each place in the 

net.  This can be the basis for a formal analysis and evaluation of the properties of an information 

architecture. 
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6. PERFORMANCE EVALUATION 

It is possible to extend the evaluation of the architecture from logical and behavioral 

evaluation to performance evaluation.  To do this, the basic CP net model must be modified to 

reflect the use of resources and to incorporate processing times and transmission delays.  In 

general, performance evaluation is a complex subject involving the determination of parameters 

that characterize the behavior and structure of system components (these are the performance 

parameters in SV-7,) Measures of Performance (MOPs) that quantify attributes of system 

behavior, performance requirements, and Measures of Effectiveness (MOEs) that measure how 

well a system performs its function.  The latter means that we must establish a method of 

comparing the measures of performance against the performance requirements to evaluate the 

measures of effectiveness.   

One of the reasons for creating the executable model of the architecture is to use it to 

generate the data needed to determine measures of performance and measures of effectiveness 

for the architecture.  The architect’s clients are not only interested in the behavior or the 

architecture, but also are interested in how well the systems built in conformance with the 

architecture meet certain performance goals or requirements.  In general, creating a model that 

can answer performance questions requires that the model be based on  the systems architecture 

view in which the functions of the operational view have been allocated to system components 

and elements, and a communications system has been specified.  The performance parameters of 

these physical components of the architecture are then incorporated into the executable model.  

The model can then be instrumented to allow the collection of data that is needed to calculate the 

values of the measures of performance.   

Because of its complexity, a detailed treatment of Performance Evaluation is beyond the 

scope of this article.  However, we will illustrate some of the fundamental concepts of 

performance evaluation using our FastPass example.   

In describing the FastPass system, we said that the main reason for OilCo to install it was that 

it would attract more customers.  This is because it would be more convenient to use than the 

conventional “pay at the pump” systems that require the customer to get a credit card out of his 

or her wallet or purse.  Implied in this rationale is that not only must the FastPass system have 

behavior that makes it easy to use, it must also operate in a timely fashion.  It is this timeliness 
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notion that is the main concept behind performance evaluation for FastPass.  Indeed, it is the 

main measure of performance for our architecture.  Furthermore, there is an implied requirement 

for this MOP: the time duration for the FastPass system to detect the FastPass device, retrieve the 

credit card information, and obtain credit approval, must be at least as fast as the current “pay at 

the pump” systems.  Let us assume that this requirement is less than 20 seconds, particularly if 

the system gives the Driver update messages as it goes through the approval process.   

While the complete performance evaluation would require the inclusion of the system 

functions in the executable model, it is possible to obtain a high level quick look at the 

performance of the architecture using the CP net model already developed.  This can be 

accomplished by changing the Design/CPN model from an untimed to a timed one and by 

providing estimates of processing delays and the time required to transmit messages over the 

communications networks.   

As described by Kristensen, et al. (1998), Design/CPN supports time by using a global clock 

whose values represent model time.  In addition to having values, tokens can carry a time value 

or time stamp designated by adding a suffix of the form @[t] where t is the value of the time 

stamp.  The tokens that will carry time stamps must belong to a color set defined as timed in the 

Global Declaration Node.  Intuitively, t is the model time which is the earliest time the token will 

be available for use: if the model time is less than the time stamp value t, the token can not 

enable any transition. If the model time is equal or larger than the time stamp value, then the 

token is available.   

The time stamp of a token is updated in two ways: through the firing of a timed transition or 

because of a timed arc expression.  A timed transition is a transition having a time region that 

contains an expression of the type @+(expression) where expression evaluates to a finite value 

that represents the duration of the process represented by the transition.  When a timed transition 

fires, timed tokens are put in the output places as defined by the output arc expressions with a 

time stamp equal to the current model time augmented by the value of the expression of the time 

region of the transition. If a transition has no time region, the time stamp associated with the 

timed tokens put in the output places is equal to the current model time.   

Output arc expressions can also be timed by adding an @+(expression) as a suffix to the 

standard arc expression. A timed arc expression can only be used for arcs that connect a 
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transition to a place whose color set has been defined as timed in the Global Declaration Node. 

When a transition fires, timed tokens are put in the output places as defined by the output arc 

expressions with a time stamp equal to the current model time augmented by the value of the 

time expression of the arc expression.   

This use of both time regions for transitions and timed arc inscriptions provides flexibility in 

the use of time in CP nets.  Sometimes it is more natural to associate a time delay with a process 

that is modeled by a transition, and other times a time delay associated with an arc that represents 

the transfer of the output of a process to another process is more appropriate.  Both models can 

be used at the same time in a model. When a timed arc expression is used with a timed transition, 

the time expression of the arc expression is added to the transition timed region so that the output 

token has a time stamp equal to the current model time augmented by the sum of the two time 

regions.  We can use these two means of incorporating time in the FastPass model to characterize 

the performance of the architecture.  We begin by estimating the processing time of each of the 

leaf functions of the functional decomposition and communications delays for each of the arcs.  

These are summarized in Tables 15 and 16 .   

Table 15  Estimated Process Durations 

Function/Transition Estimated 
Duration 

Output Place 

Sense FastPass 0 Display 
Retrieve Driver Information 10 Display, Driver Account 
Validate Credit 0 Financial Transaction 
Receive Authorization 0 Display, Authorization Transaction 
Dispense Gas 0 Display, Dispensed Gas Data 
Compute Cost of Sale 0 Dispensed Gas Data 
Request Charge 0 Financial Transaction 
Update Accounts 0 (none) 
Print Receipt 5 Receipt 
Financial Institution:Authorize 5 Authorization Transaction 
Financial Institution:Process 5 Bank Transaction 
Driver:Present FastPass 0 FastPass Device 
Driver:Dispense Gas 0 Selection 
Driver:Stop Gas 0 Selection 
Driver:Receive Receipt 0 Driver Out 

 

For this analysis, we assume that most of the processes associated with the gas station pump 

and office will take milliseconds compared to seconds to send messages over the wide area 

networks to retrieve Driver information, request credit authorizations, and update financial 
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accounts.  As a result, we set the time delay for all gas station activities to zero except for the 

printing receipt function.  We estimate the time to access the Central database to retrieve the 

Driver information will take 10 seconds, the time for the Financial Institution to perform the 

credit check function and update the account function will take 5 seconds, each.  The function to 

update the gas station accounts also will take 5 seconds.  We also estimate that it will take 5 

seconds to print the receipt.   

We assume that the FastPass system relies on communications services that can be obtained 

from standard vendors.  We estimate that the speed of service will be 3 seconds or less.   

Table 16  Estimated Communications Delays 

Producing Function Information Element 
(Color Set) 

Receiving Function Communication 
Delay 

Validate Credit Financial Transaction Financial Institution: 
Authorize 

3 

Financial Institution: 
Authorize 

Authorization 
Transaction 

Receive Authorization 3 

Request Charge Financial Transaction Financial Institution: 
Process 

3 

Financial Institution: 
Process 

Bank Transaction Update Accounts 3 

 

These processing and communications delays are incorporated into the CP net in three steps.  

A time region specifying the time duration is added to each transition with a non zero processing 

duration.  A time delay expression is added to each output arc from the producing functions of 

Table 16 that is equivalent to the estimated communications delay.  Finally, the Color Sets of the 

Information Elements of Table 16 and the output places of the transitions with time regions are 

declared as timed.  We also declare the Driver Out color set as timed so we can determine when 

the Driver departs.  The CP net model will now execute and provide time stamps for the tokens 

in each of the timed places.   

Note that we did not provide time durations for Driver actions or for the time it takes to pump 

the gas.  This is because we are only interested in the time it takes to get the credit approval after 

the Driver presents the FastPass device and the time it takes for the drive to get his receipt after 

he/she stops pumping gas.  Of course these time durations also could be added to determine the 

total time a customer spends at a pump, but since they are the same whether FastPass is used or 

not, they can be suppressed for this calculation.  
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By running the simulation, we can collect data to calculate the time duration of various 

activities for the model.  In particular we find that it takes 21 seconds from the time that the 

Driver presents the FastPass device until credit is approved.  It takes only 5 seconds for the 

Driver to receive the receipt after he/she stops pumping the gas.  The Gas station updates its 

records 11 seconds after the Driver stops pumping.   

We note that time to authorize the pumping of gas exceeds the original requirement of 20 

seconds by one second.  At this point we have two choices.  First we can try to see if the time can 

be improved by modifying the architecture.  This may be done by changing the structure of the 

architecture or by changing the performance parameters of key processors or the 

communications links.  If these changes are not possible or impractical, we can suggest that the 

requirement by adjusted to allow the architecture to meet the requirements.  By revealing this 

type of performance characteristics, the executable model allows the architect to discuss 

behavioral and performance choices with the client.   

One important characteristic of Colored Petri Nets is that the occurrence graph of a timed CP 

net is a sub-graph of the same CP net that is untimed for a given initial marking.  This means that  

every state in a timed CP net exists in the untimed net, i.e., if there were no undesirable states in 

the untimed CP net, there will be none in the timed CP net.   

We can quickly generate the timed occurrence graph of the FastPass model and compare it 

with that of the untimed CP net.  We have superimposed this occurrence graph on the untimed 

occurrence graph as shown in Fig. 38.  Again we have suppressed the detailed annotations of the 

states and the transitions and substituted more readable descriptions for the transitions.  The time 

of the firing of each transition has also been provided.   

Several observations are in order.  From a structural point of view, the sub graph of the 

untimed occurrence graph shows that the branching and joining that was associated with the two 

concurrent threads has been reduced to a single branch and join after state 13.  This branch 

occurs because both the “Request Change” and the “Print Receipt” transitions are concurrently 

enabled.   
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Figure 38 Occurrence Graph of Timed CP Net Model of FastPass Architecture  

They can fire in either order.  No other transition is ready to fire until after both of these 

transitions have occurred.  Once they have both occurred the time durations and delays cause the 
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sequence of remaining state changes to be unambiguous resulting in a single chain in the 

occurrence graph.   

The second observation is more subtle.  The annotations have been modified slightly from 

those used on the untimed occurrence graph.  This was done for the firing of transitions that had 

time regions.  For example the firing of the print receipt transition on the untimed occurrence 

graph was simply labeled “Pump Prints Receipt.”  On the timed occurrence graph the annotation 

has been changed to “Pump Starts Printing Receipt.”  This subtle change is required because of 

the method used by Design/CPN to incorporate time in CP nets.  When a timed transition fires, it 

fires instantly causing a change of state.  New tokens are created in the output places of the 

transition, but they are not immediately available due to their time stamps.  Thus we interpret the 

firing of such transitions as meaning the start of the process represented by the transition.  The 

result of that process will not be available until after the time duration associated with the 

transition.  In the FastPass example, the pump starts printing the receipt at time t =21 but the 

receipt will not be available until 5 seconds later at t = 26.  The pump also generates the request 

for charge at the same time it starts the receipt printing.  This request is generated instantly and is 

sent to the Financial Institution.  Because we have modeled the communications delay of 3 

seconds via the time expression on the arc, this request for charge is available at the Financial 

Institution at time t = 24.  Thus the Financial Institution starts processing the request at time 

t =24.   

One of the advantages of using Petri Nets as the executable model is that they provided many 

analysis tools that can be used to evaluate the architecture.  This simple example illustrates how 

the occurrence graph can be a powerful way to visualize the behavior of the model.  The state 

and transition information generated by the occurrence graph analyzer of Design/CPN provides 

most of the data needed for characterizing performance of the architecture.  For example, the 

performance analysis could be expanded to estimate the timing of the various messages 

presented to the Driver.  Each of these time delays represents a potential MOP that characterizes 

the performance of the system.  Developing other analysis techniques for evaluating 

architectures using Petri nets is an active area of research.   
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7.  CONCLUSIONS 

We have discussed the creation of information architectures in general and explored a 

process for creating the Essential and Supporting Products of the DoD C4ISR Architecture 

Framework Version 2.0.  The Framework, by its depictions of example products, has a 

Structured Analysis bias.  We have described the Structured Analysis approach, with roots in 

systems engineering, and how the architect can use the tools and techniques of Structured 

Analysis to produce a coherent set of products for the Operational and Systems views .  The 

approach provides the necessary and sufficient set of information for creating executable models 

of the architecture that can reveal its logical, behavioral, and performance characteristics. 

The Framework describes a set of products or views of the architecture.  It does not provide 

or recommend a process for creating these products.  We have developed a strawman process 

based on Structured Analysis by reverse engineering from the set of products specified by the 

Framework. We have provided a simple example as an existence proof that the process can 

work.  We recognize that each organization undertaking the development of an information 

architecture in the C4ISR domain may have its own preferred approach. We offer this approach 

that is based on the interrelationship of the products through the common data elements they 

contain as a means of reviewing any proposed approach to determine whether it preserves these 

relationships and whether it is capable of producing the particular set of products needed for the 

problem at hand.  

Our conclusion is that it is feasible for the architect to use the Structured Analysis tools and 

techniques to create an information architecture.  Once created, the C4ISR Framework products 

can be derived from the information contained in the Structured Analysis constructs.  Of course, 

executable models can also be created and used as a focus of discourse with the customers of the 

architecture, even though these are not required by the Framework.   

As was briefly discussed, there is a second approach to developing information system 

architectures that is a current area of research.  The Object-Oriented approach has its roots in 

software systems engineering and may have several advantages over Structured Analysis for 

developing architectures of the types of information systems of interest to DoD.  One main 

advantage is that newly trained engineers and computer scientists understand Object-Orientation 

much better than Structured Analysis.  The third paper of this series [Bienvenu et al., 00] 
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explores Object-Orientation for creating information system architectures in general as well 

converting the Object-Oriented products into the Essential and Supporting products of the C4ISR 

Architecture Framework.   
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APPENDIX 

 
The architecture products defined in the C4ISR Architecture Framework document, version 2, 
are listed below. For a desription, see [C4ISR 97] or [Levis and Wagenhals 00]. 
 

Table 1. All View Products 

 
Table 2.  Operational Architecture View Products 

 
 
 
 
 
 

EssentialApplicable
Architecture

View

All Views
(Context)

All Views
(Terms)

Architecture Product

Overview and Summary
Information

Integrated Dictionary

Product
Reference

AV-1 

AV-2

 Essential

Essential

or
Supporting

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

High-level Operational 
Concept Graphic

Command Relationships
Chart

Activity Model

Operational Rules Model

Operational State 
Transition Description

Operational Event/Trace
Description

Operational Node
Connectivity Description

Operational Information
Exchange Matrix

Logical Data Model

OV-1

OV-4

OV-5

OV-6a

OV-6b

OV-6c

OV-2

OV-3

OV-7

Essential

Essential

Essential

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting
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Table 3.  System Architecture View Products  

 
 

Systems

Systems

Systems

Systems

Systems

Systems

Systems

Systems

Systems

System Performance
Parameters Matrix

Systems State Transition
Description

Systems Functionality 
Description

Operational Activity to System
Function Traceability Matrix

System Information 
Exchange Matrix

System Evolution 
Description

System Technology 
Forecast

Systems Rules  Model

Systems Event/Trace 
Description

Physical Data Model

SV-4

SV-5

SV-6

SV-7

SV-8

SV-9

SV-10a

SV- 10b

SV -10c

SV-11

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Systems

Systems

System Interface
DescriptionSV-1 Essential

Systems

Systems

Systems Communications 
DescriptionSV-2 Supporting

SV-3 Systems2 Matrix Supporting


